Comparison of drug efflux transport kinetics in various blood-brain barrier models.
نویسندگان
چکیده
The present study quantitatively compared the drug efflux transport kinetics of 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and its fluorescent metabolite 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) in various blood-brain barrier (BBB) models. BCECF-AM was exposed to freshly isolated bovine brain microvessels (BBM), primary cultured bovine brain microvessel endothelial cells (BBMEC), and MDCK-MDR1 cells for 30 min in the presence or absence of the P-glycoprotein (P-gp) inhibitor N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). P-gp transport kinetics were determined indirectly by calculating the difference in BCECF accumulation when P-gp was functional and completely inhibited by GF120918 (3.2 microM). Multidrug resistance-associated protein (MRP) transport kinetics were determined by measuring the amount of BCECF transported out of the cell over time. For P-gp-related transport, Km values for BCECF-AM were approximately the same in all three models (around 2 microM), whereas the Vmax was 4-fold greater in the BBM than in the BBMEC or MDCKII-MDR1 cells. For MRP-related transport, Km values for BCECF varied widely among the three BBB models with a rank order of MDCKII-MDR1 < BBMEC < BBM. Like P-gp, the Vmax of BCECF for MRP-related transport was overwhelmingly higher in the BBM compared with the cultured cells. Because differences in the expression of P-gp, MRP5, and MRP6 were observed in the various BBB models using reverse transcription-polymerase chain reaction techniques, the disparity in transport kinetics between the BBB models may be linked to variations in the amount or type of drug efflux transporters expressed in each model. The present study introduces a method of quantitatively evaluating drug efflux transport kinetics in the BBB.
منابع مشابه
Effect of capillary efflux transport inhibition on the determination of probe recovery during in vivo microdialysis in the brain.
Intracerebral microdialysis probe recovery (extraction fraction) may be influenced by several mass transport processes in the brain, including efflux and uptake exchange between brain and blood. Therefore, changes in probe recovery under various experimental conditions can be useful to characterize fundamental drug transport processes. Accordingly, the effect of inhibiting transport on probe re...
متن کاملIn vivo measurement of blood-brain barrier permeability.
This unit describes various protocols for the in vivo quantitation of drug permeability across the rodent blood-brain barrier. Methods for the measurement of drug influx and efflux are described, and support protocols are provided for determining intravascular capillary volume and cerebral perfusion flow. An in situ perfusion technique is also provided for assessing whether transport of a test ...
متن کاملBlood Brain Barrier: The Sentinel of Brain
Introduction: The blood-brain barrier (BBB) plays a major role in controlling the microenvironment of the brain. Drug delivery to the brain is restricted by the presence of the BBB. It is actually selectively permeable to nutrients necessary for healthy brain function. Material and Methods: Various search engines like pubmed , medline and cochrane database were searched for various articles. Re...
متن کاملCoordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier.
Xenobiotic efflux pumps at the blood-brain barrier are critical modulators of central nervous system pharmacotherapy. We previously found expression of the ligand-activated nuclear receptor, pregnane X receptor (PXR), in rat brain capillaries, and showed increased expression and transport activity of the drug efflux transporter, P-glycoprotein, in capillaries exposed to PXR ligands (pregnenolon...
متن کاملHurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes.
The penetration of drugs into the human brain through the blood-brain barrier (BBB) is a major obstacle limiting the development of successful neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux transporters and metabolizing enzymes present at the BBB. The pharmaceutical industry and academic research relies heavily on permeability studies c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2006